Nonlinear Partial Differential Equations Asymptotic Behavior of Solutions and Self-Similar Solutions /

The main focus of this textbook, in two parts, is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. The exposition moves systematically from the basic to more sophisticated concepts...

Full description

Bibliographic Details
Main Authors: Giga, Mi-Ho. (Author), Giga, Yoshikazu. (Author), Saal, J<U+00fc>rgen. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Boston : Birkhũser Boston, 2010.
Series:Progress in Nonlinear Differential Equations and Their Applications ; 79
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4651-6
LEADER 03467nam a22005175i 4500
001 8423
003 DE-He213
005 20130725200230.0
007 cr nn 008mamaa
008 100601s2010 xxu| s |||| 0|eng d
020 # # |a 9780817646516  |9 978-0-8176-4651-6 
024 7 # |a 10.1007/978-0-8176-4651-6  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Giga, Mi-Ho.  |e author. 
245 1 0 |a Nonlinear Partial Differential Equations  |b Asymptotic Behavior of Solutions and Self-Similar Solutions /  |c by Mi-Ho Giga, Yoshikazu Giga, J<U+00fc>rgen Saal.  |h [electronic resource] : 
264 # 1 |a Boston :  |b Birkhũser Boston,  |c 2010. 
300 # # |a XVIII, 294p. 7 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 79 
505 0 # |a Preface -- Part I Asymptotic Behavior of Solutions of Partial Differential Equations -- 1 Behavior Near Time Infinity of Solutions of the Heat Equation -- 2 Behavior Near Time Infinity of Solutions of the Vorticity Equations -- 3 Self-Similar Solutions for Various Equations -- Part II Useful Analytic Tools -- 4 Various Properties of Solutions of the Heat Equation -- 5 Compactness Theorems -- 6 Calculus Inequalities -- 7 Convergence Theorems in the Theory of Integration -- Answers to Exercises -- Comments on Further References -- References -- Glossary -- Index. 
520 # # |a The main focus of this textbook, in two parts, is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. The exposition moves systematically from the basic to more sophisticated concepts with recent developments and several open problems. With challenging exercises, examples, and illustrations to help explain the rigorous analytic basis for the Navier<U+0013>-Stokes equations, mean curvature flow equations, and other important equations describing real phenomena, this book is written for graduate students and researchers, not only in mathematics but also in other disciplines. Nonlinear Partial Differential Equations will serve as an excellent textbook for a first course in modern analysis or as a useful self-study guide. Key topics in nonlinear partial differential equations as well as several fundamental tools and methods are presented. The only prerequisite required is a basic course in calculus. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Functional analysis. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Analysis. 
650 2 4 |a Approximations and Expansions. 
700 1 # |a Giga, Yoshikazu.  |e author. 
700 1 # |a Saal, J<U+00fc>rgen.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780817641733 
830 # 0 |a Progress in Nonlinear Differential Equations and Their Applications ;  |v 79 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-8176-4651-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)