Theoretical Statistics Topics for a Core Course /

Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the n...

Full description

Bibliographic Details
Main Author: Keener, Robert W. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Series:Springer Texts in Statistics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-93839-4
LEADER 03252nam a22004335i 4500
001 8400
003 DE-He213
005 20130725201811.0
007 cr nn 008mamaa
008 100917s2010 xxu| s |||| 0|eng d
020 # # |a 9780387938394  |9 978-0-387-93839-4 
024 7 # |a 10.1007/978-0-387-93839-4  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Keener, Robert W.  |e author. 
245 1 0 |a Theoretical Statistics  |b Topics for a Core Course /  |c by Robert W. Keener.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a XVIII, 538 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Texts in Statistics,  |x 1431-875X 
505 0 # |a Probability and measure -- Exponential families -- Risk, sufficiency, completeness, and ancillarity -- Unbiased estimation -- Curved exponential families -- Conditional distributions -- Bayesian estimation -- Large sample theory -- Estimating equations and maximum likelihood -- Equivariant estimation -- Empirical bayes and shrinkage estimators -- Hypothesis testing -- Optimal tests in higher dimensions -- General linear model -- Bayesian inference: Modeling and computation -- Asymptotic optimality -- Large sample theory for likelihood ratio tests -- Nonparametric regression -- Bootstrap methods -- Sequential methods. 
520 # # |a Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix. Robert Keener is Professor of Statistics at the University of Michigan and a fellow of the Institute of Mathematical Statistics. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387938387 
830 # 0 |a Springer Texts in Statistics,  |x 1431-875X 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-93839-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)