The Mathematics of Medical Imaging A Beginners Guide /

A Beginner's Guide to the Mathematics of Medical Imaging presents the basic mathematics of computerized tomography  the CT scan  for an audience of undergraduates in mathematics and engineering. Assuming no prior background in advanced mathematical analysis, topics such as the Fourier transfo...

Full description

Bibliographic Details
Main Author: Feeman, Timothy G. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Series:Springer Undergraduate Texts in Mathematics and Technology,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-92712-1
LEADER 03128nam a22005535i 4500
001 8393
003 DE-He213
005 20130725195255.0
007 cr nn 008mamaa
008 100715s2010 xxu| s |||| 0|eng d
020 # # |a 9780387927121  |9 978-0-387-92712-1 
024 7 # |a 10.1007/978-0-387-92712-1  |2 doi 
050 # 4 |a QA319-329.9 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 # |a Feeman, Timothy G.  |e author. 
245 1 4 |a The Mathematics of Medical Imaging  |b A Beginner s Guide /  |c by Timothy G. Feeman.  |h [electronic resource] : 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a X, 141p. 20 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 # |a Preface -- X-Rays -- Lines and Line Integrals -- The Radon Transform -- Back Projection -- Complex Numbers -- The Fourier Transform -- Two Big Theorems -- Filters and Convolution -- Discrete Image Reconstruction -- Sampling -- Algebraic Reconstruction Techniques. 
520 # # |a A Beginner's Guide to the Mathematics of Medical Imaging presents the basic mathematics of computerized tomography the CT scan for an audience of undergraduates in mathematics and engineering. Assuming no prior background in advanced mathematical analysis, topics such as the Fourier transform, sampling, and discrete approximation algorithms are introduced from scratch and are developed within the context of medical imaging. A chapter on magnetic resonance imaging focuses on manipulation of the Bloch equation, the system of differential equations that is the foundation of this important technology. The text is self-contained with a range of practical exercises, topics for further study, and an ample bibliography, making it ideal for use in an undergraduate course in applied or engineering mathematics, or by practitioners in radiology who want to know more about the mathematical foundations of their field. 
650 # 0 |a Mathematics. 
650 # 0 |a Radiology, Medical. 
650 # 0 |a Computer science. 
650 # 0 |a Computer vision. 
650 # 0 |a Functional analysis. 
650 # 0 |a Integral Transforms. 
650 # 0 |a Biomedical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Imaging / Radiology. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Math Applications in Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Biomedical Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387927114 
830 # 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-92712-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)