Optimization<U+0014>Theory and Practice

Optimization is an important field in its own right but also plays a central role in numerous applied sciences, including operations research, management science, economics, finance, and engineering. Optimization <U+0014> Theory and Practice offers a modern and well-balanced presentation of va...

Full description

Bibliographic Details
Main Authors: Forst, Wilhelm. (Author), Hoffmann, Dieter. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York, 2010.
Series:Springer Undergraduate Texts in Mathematics and Technology,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-78977-4
LEADER 04375nam a22005415i 4500
001 8342
003 DE-He213
005 20130725200933.0
007 cr nn 008mamaa
008 100716s2010 xxu| s |||| 0|eng d
020 # # |a 9780387789774  |9 978-0-387-78977-4 
024 7 # |a 10.1007/978-0-387-78977-4  |2 doi 
050 # 4 |a QA402.5-402.6 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 # |a Forst, Wilhelm.  |e author. 
245 1 0 |a Optimization<U+0014>Theory and Practice  |c by Wilhelm Forst, Dieter Hoffmann.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 # # |a XVIII, 402p. 87 illus., 81 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
505 0 # |a 1. Introduction: Examples of Optimization Problems, Historical Overview -- 2. Optimality Conditions: Convex Sets, Inequalities, Local First- and Second-Order Optimality Conditions, Duality -- 3. Unconstrained Optimization Problems: Elementary Search and Localization Methods, Descent Methods with Line Search, Trust Region Methods, Conjugate Gradient Methods, Quasi-Newton Methods -- 4. Linearly Constrained Optimization Problems: Linear and Quadratic Optimization, Projection Methods -- 5. Nonlinearly Constrained Optimization Methods: Penalty Methods, SQP Methods -- 6. Interior-Point Methods for Linear Optimization: The Central Path, Newton's Method for the Primal-Dual System, Path-Following Algorithms, Predictor-Corrector Methods -- 7. Semidefinite Optimization: Selected Special Cases, The S-Procedure, The Function logʻdet, Path-Following Methods, How to Solve SDO Problems?, Icing on the Cake: Pattern Separation via Ellipsoids -- 8. Global Optimization: Branch and Bound Methods, Cutting Plane Methods -- Appendices: A Second Look at the Constraint Qualifications, The Fritz John Condition, Optimization Software Tools for Teaching and Learning -- Bibliography -- Index of Symbols -- Subject Index. 
520 # # |a Optimization is an important field in its own right but also plays a central role in numerous applied sciences, including operations research, management science, economics, finance, and engineering. Optimization <U+0014> Theory and Practice offers a modern and well-balanced presentation of various optimization techniques and their applications. The book's clear structure, sound theoretical basics complemented by insightful illustrations and instructive examples, makes it an ideal introductory textbook and provides the reader with a comprehensive foundation in one of the most fascinating and useful branches of mathematics. Notable features include: Detailed explanations of theoretic results accompanied by supporting algorithms and exercises, often supplemented by helpful hints or MATLABʼ/MAPLEʼ code fragments; an overview of the MATLABʼ Optimization Toolbox and demonstrations of its uses with selected examples; accessibility to readers with a knowledge of multi-dimensional calculus, linear algebra, and basic numerical methods. Written at an introductory level, this book is intended for advanced undergraduates and graduate students, but may also be used as a reference by academics and professionals in mathematics and the applied sciences. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra  |x Data processing. 
650 # 0 |a Algebra. 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Symbolic and Algebraic Manipulation. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Algebra. 
700 1 # |a Hoffmann, Dieter.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387789767 
830 # 0 |a Springer Undergraduate Texts in Mathematics and Technology,  |x 1867-5506 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-0-387-78977-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)