Mean Field Theories and Dual Variation

A mathematical theory is introduced in this book to unify a large class of nonlinear partial differential equation (PDE) models for better understanding and analysis of the physical and biological phenomena they represent. The so-called mean field approximation approach is adopted to describe the ma...

Full description

Bibliographic Details
Main Author: Suzuki, Takashi. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Paris : Atlantis Press, 2009.
Series:Atlantis Studies in Mathematics for Engineering and Science, 2
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2991/978-94-91216-22-0
LEADER 02604nam a22004335i 4500
001 8255
003 DE-He213
005 20130726232726.0
007 cr nn 008mamaa
008 120301s2009 fr | s |||| 0|eng d
020 # # |a 9789491216220  |9 978-94-91216-22-0 
024 7 # |a 10.2991/978-94-91216-22-0  |2 doi 
050 # 4 |a QA372 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 # |a Suzuki, Takashi.  |e author. 
245 1 0 |a Mean Field Theories and Dual Variation  |c by Takashi Suzuki.  |h [electronic resource] / 
264 # 1 |a Paris :  |b Atlantis Press,  |c 2009. 
300 # # |a X, 288p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Atlantis Studies in Mathematics for Engineering and Science,  |v 2  |x 1875-7642 ; 
520 # # |a A mathematical theory is introduced in this book to unify a large class of nonlinear partial differential equation (PDE) models for better understanding and analysis of the physical and biological phenomena they represent. The so-called mean field approximation approach is adopted to describe the macroscopic phenomena from certain microscopic principles for this unified mathematical formulation. Two key ingredients for this approach are the notions of duality according to the PDE weak solutions and hierarchy for revealing the details of the otherwise hidden secrets, such as physical mystery hidden between particle density and field concentration, quantized blow up biological mechanism sealed in chemotaxis systems, as well as multi-scale mathematical explanations of the Smoluchowski Poisson model in non-equilibrium thermodynamics, two-dimensional turbulence theory, self-dual gauge theory, and so forth. This book shows how and why many different nonlinear problems are inter-connected in terms of the properties of duality and scaling, and the way to analyze them mathematically. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential Equations. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
830 # 0 |a Atlantis Studies in Mathematics for Engineering and Science,  |v 2  |x 1875-7642 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.2991/978-94-91216-22-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)