Implementing Spectral Methods for Partial Differential Equations Algorithms for Scientists and Engineers /

This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematic...

Full description

Bibliographic Details
Main Author: Kopriva, David A. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2009.
Series:Scientific Computation,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-90-481-2261-5
LEADER 02957nam a22004935i 4500
001 8088
003 DE-He213
005 20130725191905.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 # # |a 9789048122615  |9 978-90-481-2261-5 
024 7 # |a 10.1007/978-90-481-2261-5  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Kopriva, David A.  |e author. 
245 1 0 |a Implementing Spectral Methods for Partial Differential Equations  |b Algorithms for Scientists and Engineers /  |c by David A. Kopriva.  |h [electronic resource] : 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Scientific Computation,  |x 1434-8322 
520 # # |a This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematical physics describing potentials, transport, and wave propagation. David Kopriva, a well-known researcher in the field with extensive practical experience, shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries. The book addresses computational and applications scientists, as it emphasizes the practical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectral approximation and the basic algorithms, including FFT algorithms, Gauss quadrature algorithms, and how to approximate derivatives. The second part shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at the end of each chapter encourage the reader to experiment with the algorithms. 
650 # 0 |a Mathematics. 
650 # 0 |a Electronic data processing. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Computer science  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048122608 
830 # 0 |a Scientific Computation,  |x 1434-8322 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-90-481-2261-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)