Numerical Models for Differential Problems

In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation l...

Full description

Bibliographic Details
Main Author: Quarteroni, Alfio. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Milano : Springer Milan, 2009.
Series:MS&A ; 2
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-88-470-1071-0
LEADER 03595nam a22005175i 4500
001 8017
003 DE-He213
005 20130913034459.0
007 cr nn 008mamaa
008 100301s2009 it | s |||| 0|eng d
020 # # |a 9788847010710  |9 978-88-470-1071-0 
024 7 # |a 10.1007/978-88-470-1071-0  |2 doi 
050 # 4 |a QA1-939 
072 # 7 |a PB  |2 bicssc 
072 # 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 # |a Quarteroni, Alfio.  |e author. 
245 1 0 |a Numerical Models for Differential Problems  |c by Alfio Quarteroni.  |h [electronic resource] / 
264 # 1 |a Milano :  |b Springer Milan,  |c 2009. 
300 # # |a XVI, 601 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a MS&A ;  |v 2 
505 0 # |a Introduction -- 1 A brief survey on partial differential equations -- 2 Elliptic equations -- 3 The Galerkin finite element method for elliptic problems -- 4 Spectral methods -- 5 Diffusion-transport-reaction equations -- 6 Parabolic equations -- 7 Finite differences for hyperbolic equations -- 8 Finite elements and spectral methods for hyperbolic equations -- 9 Nonlinear hyperbolic problems -- 10 The Navier-Stokes equations -- 11 Finite element programming -- 12 Generation of 1D and 2D grids -- 13 The finite volume method -- 14 Domain decomposition method -- 15 Optimal control problems for partial differential equations -- 16 Reduced basis methods -- 17 Appendix A: Elements of functional analysis -- 18 Appendix B: Solution of algebraic systems. 
520 # # |a In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Computer science  |x Mathematics. 
650 # 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Analysis. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847010703 
830 # 0 |a MS&A ;  |v 2 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-88-470-1071-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)