Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

Stochastic programming provides a framework for modelling, analyzing, and solving optimization problems with some parameters being not known up to a probability distribution. Such problems arise in a variety of applications, such as inventory control, financial planning and portfolio optimization, a...

Full description

Bibliographic Details
Main Author: K<U+00fc>chler, Christian. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Wiesbaden : Vieweg+Teubner, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9399-4
LEADER 02246nam a22003855i 4500
001 7907
003 DE-He213
005 20130725200258.0
007 cr nn 008mamaa
008 100530s2009 gw | s |||| 0|eng d
020 # # |a 9783834893994  |9 978-3-8348-9399-4 
024 7 # |a 10.1007/978-3-8348-9399-4  |2 doi 
050 # 4 |a QA1-939 
072 # 7 |a PB  |2 bicssc 
072 # 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 # |a K<U+00fc>chler, Christian.  |e author. 
245 1 0 |a Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming  |c by Christian K<U+00fc>chler.  |h [electronic resource] / 
264 # 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2009. 
300 # # |a 184p. 49 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a Stochastic programming provides a framework for modelling, analyzing, and solving optimization problems with some parameters being not known up to a probability distribution. Such problems arise in a variety of applications, such as inventory control, financial planning and portfolio optimization, airline revenue management, scheduling and operation of power systems, and supply chain management. Christian K<U+00fc>chler studies various aspects of the stability of stochastic optimization problems as well as approximation and decomposition methods in stochastic programming. In particular, the author presents an extension of the Nested Benders decomposition algorithm related to the concept of recombining scenario trees. The approach combines the concept of cut sharing with a specific aggregation procedure and prevents an exponentially growing number of subproblem evaluations. Convergence results and numerical properties are discussed. 
650 # 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834809216 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9399-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)