Shape Optimization under Uncertainty from a Stochastic Programming Point of View

Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization. Harald Held considers an elastic body subjected to uncertain internal and external forc...

Full description

Bibliographic Details
Main Author: Held, Harald. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Wiesbaden : Vieweg+Teubner, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9396-3
LEADER 02385nam a22003855i 4500
001 7906
003 DE-He213
005 20130725200258.0
007 cr nn 008mamaa
008 100530s2009 gw | s |||| 0|eng d
020 # # |a 9783834893963  |9 978-3-8348-9396-3 
024 7 # |a 10.1007/978-3-8348-9396-3  |2 doi 
050 # 4 |a QA1-939 
072 # 7 |a PB  |2 bicssc 
072 # 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 # |a Held, Harald.  |e author. 
245 1 0 |a Shape Optimization under Uncertainty from a Stochastic Programming Point of View  |c by Harald Held.  |h [electronic resource] / 
264 # 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2009. 
300 # # |a 148p. 39 illus., 26 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a Optimization problems are relevant in many areas of technical, industrial, and economic applications. At the same time, they pose challenging mathematical research problems in numerical analysis and optimization. Harald Held considers an elastic body subjected to uncertain internal and external forces. Since simply averaging the possible loadings will result in a structure that might not be robust for the individual loadings, he uses techniques from level set based shape optimization and two-stage stochastic programming. Taking advantage of the PDE s linearity, he is able to compute solutions for an arbitrary number of scenarios without significantly increasing the computational effort. The author applies a gradient method using the shape derivative and the topological gradient to minimize, e.g., the compliance . and shows that the obtained solutions strongly depend on the initial guess, in particular its topology. The stochastic programming perspective also allows incorporating risk measures into the model which might be a more appropriate objective in many practical applications. 
650 # 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834809094 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9396-3 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)