Lectures on Algebraic Statistics

How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic s...

Full description

Bibliographic Details
Main Authors: Drton, Mathias. (Author), Sturmfels, Bernd. (Author), Sullivant, Seth. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Oberwolfach Seminars ; 39
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8905-5
LEADER 02857nam a22005055i 4500
001 7830
003 DE-He213
005 20130725191729.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783764389055  |9 978-3-7643-8905-5 
024 7 # |a 10.1007/978-3-7643-8905-5  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Drton, Mathias.  |e author. 
245 1 0 |a Lectures on Algebraic Statistics  |c by Mathias Drton, Bernd Sturmfels, Seth Sullivant.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |a VIII, 172 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Oberwolfach Seminars ;  |v 39 
505 0 # |a Preface -- 1. Markov bases -- 2. Likelihood inference -- 3. Conditional independence -- 4. Hidden variables -- 5. Bayesian integrals -- 6. Exercises -- 7. Open problems. 
520 # # |a How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models. 
650 # 0 |a Statistics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 # |a Sturmfels, Bernd.  |e author. 
700 1 # |a Sullivant, Seth.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764389048 
830 # 0 |a Oberwolfach Seminars ;  |v 39 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8905-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)