Intermediate Spectral Theory and Quantum Dynamics

The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to...

Full description

Bibliographic Details
Main Author: Oliveira, Cšar R. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Progress in Mathematical Physics ; 54
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8795-2
LEADER 03053nam a22004215i 4500
001 7820
003 DE-He213
005 20130725190741.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783764387952  |9 978-3-7643-8795-2 
024 7 # |a 10.1007/978-3-7643-8795-2  |2 doi 
100 1 # |a Oliveira, Cšar R.  |e author. 
245 1 0 |a Intermediate Spectral Theory and Quantum Dynamics  |c by Cšar R. Oliveira.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematical Physics ;  |v 54 
505 0 # |a 1 Linear Operators and Spectrum -- 2 Adjoint Operator -- 3 Fourier Transform and Free Hamiltonian -- 4 Operators via Sesquilinear Forms -- 5 Unitary Evolution Groups -- 6 Kato-Rellich Theorem -- 7 Boundary Triples and Self-Adjointness -- 8 Spectral Theorem -- 9 Applications of the Spectral Theorem -- 10 Convergence of Self-Adjoint Operators -- 11 Spectral Decomposition I -- 12 Spectral Decomposition II -- 13 Spectrum and Quantum Dynamics -- 14 Some Quantum Relations. 
520 # # |a The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-adjointness, and ends with the effect of spectral type on the large time behaviour of quantum systems. Many examples and exercises are included that focus on quantum mechanics. 
650 # 0 |a Physics. 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Physics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764387945 
830 # 0 |a Progress in Mathematical Physics ;  |v 54 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8795-2 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)