Metric Foliations and Curvature

In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a repr...

Full description

Bibliographic Details
Main Authors: Gromoll, Detlef. (Author), Walschap, Gerard. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Progress in Mathematics ; 268
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8715-0
LEADER 02285nam a22004455i 4500
001 7814
003 DE-He213
005 20130725191454.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783764387150  |9 978-3-7643-8715-0 
024 7 # |a 10.1007/978-3-7643-8715-0  |2 doi 
050 # 4 |a QA641-670 
072 # 7 |a PBMP  |2 bicssc 
072 # 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 # |a Gromoll, Detlef.  |e author. 
245 1 0 |a Metric Foliations and Curvature  |c by Detlef Gromoll, Gerard Walschap.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Progress in Mathematics ;  |v 268 
505 0 # |a Preface -- 1. Submersions, Foliations and Metrics -- 2 -- Basic Constructions and Examples -- 3. Open Manifolds of Nonnegative Curvature -- 4. Metric Foliations in Space Forms -- Bibliography -- Index. 
520 # # |a In the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof. This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space. 
650 # 0 |a Mathematics. 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
700 1 # |a Walschap, Gerard.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764387143 
830 # 0 |a Progress in Mathematics ;  |v 268 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7643-8715-0 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)