Vector fields on Singular Varieties

Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincar-̌Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the <U+0018>good<U+0019> notion of the...

Full description

Bibliographic Details
Main Authors: Brasselet, Jean-Paul. (Author), Seade, Jos.̌ (Author), Suwa, Tatsuo. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1987
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-05205-7
LEADER 02673nam a22005535i 4500
001 7702
003 DE-He213
005 20130725193939.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642052057  |9 978-3-642-05205-7 
024 7 # |a 10.1007/978-3-642-05205-7  |2 doi 
050 # 4 |a QA331.7 
072 # 7 |a PBKD  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 # |a Brasselet, Jean-Paul.  |e author. 
245 1 0 |a Vector fields on Singular Varieties  |c by Jean-Paul Brasselet, Jos ̌Seade, Tatsuo Suwa.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1987  |x 0075-8434 ; 
520 # # |a Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincar-̌Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology. It is natural to ask what is the <U+0018>good<U+0019> notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson. We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Global analysis. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Algebraic Geometry. 
700 1 # |a Seade, Jos.̌  |e author. 
700 1 # |a Suwa, Tatsuo.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642052040 
830 # 0 |a Lecture Notes in Mathematics,  |v 1987  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-05205-7 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)