Partial Inner Product Spaces Theory and Applications /

Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systema...

Full description

Bibliographic Details
Main Authors: Antoine, Jean-Pierre. (Author), Trapani, Camillo. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1986
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-05136-4
LEADER 02746nam a22005055i 4500
001 7697
003 DE-He213
005 20130725194154.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 # # |a 9783642051364  |9 978-3-642-05136-4 
024 7 # |a 10.1007/978-3-642-05136-4  |2 doi 
050 # 4 |a QA319-329.9 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 # |a Antoine, Jean-Pierre.  |e author. 
245 1 0 |a Partial Inner Product Spaces  |b Theory and Applications /  |c by Jean-Pierre Antoine, Camillo Trapani.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XX, 358 p. 11 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1986  |x 0075-8434 ; 
505 0 # |a 1 General Theory : Algebraic Point of View -- 2 General Theory : Topological Aspects -- 3 Operators on PIP-spaces and Indexed PIP-spaces -- 4 Examples of Indexed PIP-spaces -- 5 Refinements of PIP-spaces -- 6 Partial *-algebras of Operators in a PIP-space -- 7 Applications in Mathematical Physics -- 8 PIP-spaces and Signal Processing. 
520 # # |a Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 # 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Information and Communication, Circuits. 
700 1 # |a Trapani, Camillo.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642051357 
830 # 0 |a Lecture Notes in Mathematics,  |v 1986  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-05136-4 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)