|
|
|
|
LEADER |
03540nam a22005055i 4500 |
001 |
7632 |
003 |
DE-He213 |
005 |
20130725193835.0 |
007 |
cr nn 008mamaa |
008 |
100301s2009 gw | s |||| 0|eng d |
020 |
# |
# |
|a 9783642045868
|9 978-3-642-04586-8
|
024 |
7 |
# |
|a 10.1007/978-3-642-04586-8
|2 doi
|
050 |
# |
4 |
|a TA329-348
|
050 |
# |
4 |
|a TA640-643
|
072 |
# |
7 |
|a TBJ
|2 bicssc
|
072 |
# |
7 |
|a MAT003000
|2 bisacsh
|
082 |
0 |
4 |
|a 519
|2 23
|
100 |
1 |
# |
|a Gopalakrishnan, Kasthurirangan.
|e editor.
|
245 |
1 |
0 |
|a Intelligent and Soft Computing in Infrastructure Systems Engineering
|b Recent Advances /
|c edited by Kasthurirangan Gopalakrishnan, Halil Ceylan, Nii O. Attoh-Okine.
|h [electronic resource] :
|
264 |
# |
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2009.
|
300 |
# |
# |
|b online resource.
|
336 |
# |
# |
|a text
|b txt
|2 rdacontent
|
337 |
# |
# |
|a computer
|b c
|2 rdamedia
|
338 |
# |
# |
|a online resource
|b cr
|2 rdacarrier
|
347 |
# |
# |
|a text file
|b PDF
|2 rda
|
490 |
1 |
# |
|a Studies in Computational Intelligence,
|v 259
|x 1860-949X ;
|
520 |
# |
# |
|a The use of intelligent and soft computing techniques in the field of geomechanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomechanical modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geomechanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpretation of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, subgrade soils characterization, and backcalculation of pavement layer thickness and moduli. Researchers and practitioners engaged in developing and applying soft computing and intelligent systems principles to solving real-world infrastructure engineering problems will find this book very useful. This book will also serve as an excellent state-of-the-art reference material for graduate and postgraduate students in transportation infrastructure engineering.
|
650 |
# |
0 |
|a Engineering.
|
650 |
# |
0 |
|a Artificial intelligence.
|
650 |
# |
0 |
|a Engineering mathematics.
|
650 |
# |
0 |
|a Engineering economy.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Appl.Mathematics/Computational Methods of Engineering.
|
650 |
2 |
4 |
|a Artificial Intelligence (incl. Robotics).
|
650 |
2 |
4 |
|a Engineering Economics, Organization, Logistics, Marketing.
|
700 |
1 |
# |
|a Ceylan, Halil.
|e editor.
|
700 |
1 |
# |
|a Attoh-Okine, Nii O.
|e editor.
|
710 |
2 |
# |
|a SpringerLink (Online service)
|
773 |
0 |
# |
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642045851
|
830 |
# |
0 |
|a Studies in Computational Intelligence,
|v 259
|x 1860-949X ;
|
856 |
4 |
0 |
|u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04586-8
|
912 |
# |
# |
|a ZDB-2-ENG
|
950 |
# |
# |
|a Engineering (Springer-11647)
|