Non-Standard Parameter Adaptation for Exploratory Data Analysis

Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by revie...

Full description

Bibliographic Details
Main Authors: Barbakh, Wesam Ashour. (Author), Wu, Ying. (Author), Fyfe, Colin. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 249
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04005-4
LEADER 03362nam a22004815i 4500
001 7534
003 DE-He213
005 20130725193137.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642040054  |9 978-3-642-04005-4 
024 7 # |a 10.1007/978-3-642-04005-4  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Barbakh, Wesam Ashour.  |e author. 
245 1 0 |a Non-Standard Parameter Adaptation for Exploratory Data Analysis  |c by Wesam Ashour Barbakh, Ying Wu, Colin Fyfe.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 249  |x 1860-949X ; 
505 0 # |a Introduction -- Review of Clustering Algorithms -- Review of Linear Projection Methods -- Non-standard Clustering Criteria -- Topographic Mappings and Kernel Clustering -- Online Clustering Algorithms and Reinforcement learning -- Connectivity Graphs and Clustering with Similarity Functions -- Reinforcement Learning of Projections -- Cross Entropy Methods -- Conclusions. 
520 # # |a Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets. We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Wu, Ying.  |e author. 
700 1 # |a Fyfe, Colin.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642040047 
830 # 0 |a Studies in Computational Intelligence,  |v 249  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04005-4 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)