Domain Decomposition Methods in Science and Engineering XVIII

These are the proceedings of the 18th international conference on domain decomposition methods in science and engineering, held in Jerusalem, January 12-17, 2008. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations th...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Bercovier, Michel. (Editor), Gander, Martin J. (Editor), Kornhuber, Ralf. (Editor), Widlund, Olof. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Computational Science and Engineering, 70
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02677-5
LEADER 02632nam a22005175i 4500
001 7304
003 DE-He213
005 20130725192806.0
007 cr nn 008mamaa
008 101125s2009 gw | s |||| 0|eng d
020 # # |a 9783642026775  |9 978-3-642-02677-5 
024 7 # |a 10.1007/978-3-642-02677-5  |2 doi 
050 # 4 |a QA71-90 
072 # 7 |a PBKS  |2 bicssc 
072 # 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
082 0 4 |a 518  |2 23 
100 1 # |a Bercovier, Michel.  |e editor. 
245 1 0 |a Domain Decomposition Methods in Science and Engineering XVIII  |c edited by Michel Bercovier, Martin J. Gander, Ralf Kornhuber, Olof Widlund.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XVI, 376p. 81 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Computational Science and Engineering,  |v 70  |x 1439-7358 ; 
520 # # |a These are the proceedings of the 18th international conference on domain decomposition methods in science and engineering, held in Jerusalem, January 12-17, 2008. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well developed theory which is having a direct impact on the development and improvements of these algorithms. 
650 # 0 |a Mathematics. 
650 # 0 |a Computer science. 
650 # 0 |a Computer science  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Mathematics of Computing. 
700 1 # |a Gander, Martin J.  |e editor. 
700 1 # |a Kornhuber, Ralf.  |e editor. 
700 1 # |a Widlund, Olof.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642026768 
830 # 0 |a Lecture Notes in Computational Science and Engineering,  |v 70  |x 1439-7358 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02677-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)