Stochastic Analysis in Discrete and Continuous Settings With Normal Martingales /

This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The si...

Full description

Bibliographic Details
Main Author: Privault, Nicolas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1982
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02380-4
LEADER 02698nam a22004815i 4500
001 7252
003 DE-He213
005 20130725192315.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 # # |a 9783642023804  |9 978-3-642-02380-4 
024 7 # |a 10.1007/978-3-642-02380-4  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Privault, Nicolas.  |e author. 
245 1 0 |a Stochastic Analysis in Discrete and Continuous Settings  |b With Normal Martingales /  |c by Nicolas Privault.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1982  |x 0075-8434 ; 
505 0 # |a 1 The Discrete Time Case -- 2 Continuous Time Normal Martingales -- 3 Gradient and Divergence Operators -- 4 Annihilation and creation operators -- 5 Analysis on the Wiener Space -- 6 Analysis on the Poisson space -- 7 Local Gradients on the Poisson space -- 8 Option Hedging in Continuous Time . 
520 # # |a This volume gives a unified presentation of stochastic analysis for continuous and discontinuous stochastic processes, in both discrete and continuous time. It is mostly self-contained and accessible to graduate students and researchers having already received a basic training in probability. The simultaneous treatment of continuous and jump processes is done in the framework of normal martingales; that includes the Brownian motion and compensated Poisson processes as specific cases. In particular, the basic tools of stochastic analysis (chaos representation, gradient, divergence, integration by parts) are presented in this general setting. Applications are given to functional and deviation inequalities and mathematical finance. 
650 # 0 |a Mathematics. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642023798 
830 # 0 |a Lecture Notes in Mathematics,  |v 1982  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-02380-4 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)