Smooth Ergodic Theory for Endomorphisms

This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space techniq...

Full description

Bibliographic Details
Main Authors: Qian, Min. (Author), Xie, Jian-Sheng. (Author), Zhu, Shu. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1978
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01954-8
LEADER 03171nam a22005055i 4500
001 7161
003 DE-He213
005 20130725192248.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 # # |a 9783642019548  |9 978-3-642-01954-8 
024 7 # |a 10.1007/978-3-642-01954-8  |2 doi 
050 # 4 |a QA313 
072 # 7 |a PBWR  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 # |a Qian, Min.  |e author. 
245 1 0 |a Smooth Ergodic Theory for Endomorphisms  |c by Min Qian, Jian-Sheng Xie, Shu Zhu.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1978  |x 0075-8434 ; 
505 0 # |a I Preliminaries -- II Margulis-Ruelle Inequality -- III Expanding Maps -- IV Axiom A Endomorphisms -- V Unstable and Stable Manifolds -- VI Pesin s Entropy Formula -- VII SRB Measures and Entropy Formula -- VIII Ergodic Property of Lyapunov Exponents -- IX Generalized Entropy Formula -- X Dimension of Hyperbolic Measures. 
520 # # |a This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin s entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Mechanical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mechanical Engineering. 
700 1 # |a Xie, Jian-Sheng.  |e author. 
700 1 # |a Zhu, Shu.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642019531 
830 # 0 |a Lecture Notes in Mathematics,  |v 1978  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01954-8 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)