The Dirac Spectrum

This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, we present the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries. We give examples where the spectrum can be made explicit and present a chapt...

Full description

Bibliographic Details
Main Author: Ginoux, Nicolas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1976
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01570-0
LEADER 02474nam a22004455i 4500
001 7099
003 DE-He213
005 20130725191921.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642015700  |9 978-3-642-01570-0 
024 7 # |a 10.1007/978-3-642-01570-0  |2 doi 
100 1 # |a Ginoux, Nicolas.  |e author. 
245 1 4 |a The Dirac Spectrum  |c by Nicolas Ginoux.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1976  |x 0075-8434 ; 
505 0 # |a 1 Basics of spin geometry -- 2 Explicit computations of spectra -- 3 Lower eigenvalue estimates on closed manifolds -- 4 Lower eigenvalue estimates on compact manifolds with boundary -- 5 Upper eigenvalue bounds on closed manifolds -- 6 Prescription of eigenvalues on closed manifolds -- 7 The Dirac spectrum on non-compact manifolds -- 8 Other topics related with the Dirac spectrum -- A The twistor and Killing spinor equations. 
520 # # |a This volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, we present the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries. We give examples where the spectrum can be made explicit and present a chapter dealing with the non-compact setting. The methods mostly involve elementary analytical techniques and are therefore accessible for Master students entering the subject. A complete and updated list of references is also included. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Global differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642015694 
830 # 0 |a Lecture Notes in Mathematics,  |v 1976  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01570-0 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)