Foundations of Computational Intelligence Volume 3 Global Optimization /

Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Abraham, Ajith. (Editor), Hassanien, Aboul-Ella. (Editor), Siarry, Patrick. (Editor), Engelbrecht, Andries. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 203
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01085-9
LEADER 04936nam a22005055i 4500
001 7014
003 DE-He213
005 20130725191754.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642010859  |9 978-3-642-01085-9 
024 7 # |a 10.1007/978-3-642-01085-9  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Abraham, Ajith.  |e editor. 
245 1 0 |a Foundations of Computational Intelligence Volume 3  |b Global Optimization /  |c edited by Ajith Abraham, Aboul-Ella Hassanien, Patrick Siarry, Andries Engelbrecht.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XII, 528p. 180 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 203  |x 1860-949X ; 
505 0 # |a Part-I: Global Optimization Algorithms: Theoretical Foundations and Perspectives -- Genetic Algorithms for the Use in Combinatorial Problems. - Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications -- Global Optimization Using Harmony Search: Theoretical Foundations and Applications -- Particle Swarm Optimization: Performance Tuning and Empirical Analysis -- Tabu Search to Solve Real-Life Combinatorial Optimization Problems: a Case of Study -- Reformulations in Mathematical Programming: A Computational Approach -- Graph-based Local Elimination Algorithms in Discrete Optimization? -- Evolutionary Approach to Solving Non-stationary Dynamic Multi-objective Problems. Turbulent Particle Swarm Optimization with Fuzzy Parameter Tuning -- Part-II: Global Optimization Algorithms: Applications -- An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy -- Evolutionary Computing in Statistical Data Analysis -- Meta-heuristics for system design engineering -- Transgenetic Algorithm: A New Endosymbiotic Approach for Evolutionary Algorithms -- Multi-Objective Team Forming Optimization for Integrated Product Development Projects -- Task Scheduling Problem Using Genetic Algorithms for Distributed Systems -- PSO Bounds: A New Hybridization Technique of PSO and EDAs. 
520 # # |a Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Hassanien, Aboul-Ella.  |e editor. 
700 1 # |a Siarry, Patrick.  |e editor. 
700 1 # |a Engelbrecht, Andries.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642010842 
830 # 0 |a Studies in Computational Intelligence,  |v 203  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-01085-9 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)