Tuning Metaheuristics A Machine Learning Perspective /

The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuris...

Full description

Bibliographic Details
Main Author: Birattari, Mauro. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 197
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-00483-4
LEADER 02701nam a22004695i 4500
001 6907
003 DE-He213
005 20130725191757.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642004834  |9 978-3-642-00483-4 
024 7 # |a 10.1007/978-3-642-00483-4  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Birattari, Mauro.  |e author. 
245 1 0 |a Tuning Metaheuristics  |b A Machine Learning Perspective /  |c by Mauro Birattari.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 197  |x 1860-949X ; 
505 0 # |a Introduction -- Background and state of the art -- Statement of the tuning problem -- F-Race for tuning metaheuristics -- Experiments and applications -- Some considerations on the experimental methodology -- Conclusions. 
520 # # |a The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science. This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642004827 
830 # 0 |a Studies in Computational Intelligence,  |v 197  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-00483-4 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)