Option Pricing in Fractional Brownian Markets

The scientific debate of recent years about option pricing with respect to fractional Brownian motion was focused on the feasibility of the no arbitrage pricing approach. As the unrestricted fractional market setting allows for arbitrage, the conventional reasoning is that fractional Brownian motion...

Full description

Bibliographic Details
Main Author: Rostek, Stefan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Economics and Mathematical Systems, 622
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-00331-8
LEADER 02864nam a22004215i 4500
001 6877
003 DE-He213
005 20130725191741.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783642003318  |9 978-3-642-00331-8 
024 7 # |a 10.1007/978-3-642-00331-8  |2 doi 
100 1 # |a Rostek, Stefan.  |e author. 
245 1 0 |a Option Pricing in Fractional Brownian Markets  |c by Stefan Rostek.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XIV, 137p. 72 illus., 36 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Economics and Mathematical Systems,  |v 622  |x 0075-8442 ; 
505 0 # |a Introduction -- Fractional Integration Calculus -- Fractional Binomial Trees -- Characteristics of the Fractional Brownian Market: Arbitrage and Its Exclusion -- Risk Preference Based Option Pricing in a Continuous Time Fractional Brownian Market -- Risk Preference Based Option Pricing in the Fractional Binomial Setting -- Conclusion. 
520 # # |a The scientific debate of recent years about option pricing with respect to fractional Brownian motion was focused on the feasibility of the no arbitrage pricing approach. As the unrestricted fractional market setting allows for arbitrage, the conventional reasoning is that fractional Brownian motion does not qualify for modeling price process. In this book, the author points out that arbitrage can only be excluded in case that market prices move at least slightly faster than any market participant can react. He clarifies that continuous tradability always eliminates the risk of the fractional price process, irrespective of the interpretation of the stochastic integral as an integral of Stratonovich or It ̥type. Being left with an incomplete market setting, the author shows that option valuation with respect to fractional Brownian motion may be solved by applying a risk preference based approach. The latter provides us with an intuitive closed-form solution for European options within the fractional context. 
650 # 0 |a Economics. 
650 # 0 |a Finance. 
650 # 0 |a Banks and banking. 
650 1 4 |a Economics/Management Science. 
650 2 4 |a Finance /Banking. 
650 2 4 |a Financial Economics. 
650 2 4 |a Quantitative Finance. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642003301 
830 # 0 |a Lecture Notes in Economics and Mathematical Systems,  |v 622  |x 0075-8442 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-00331-8 
912 # # |a ZDB-2-SBE 
950 # # |a Business and Economics (Springer-11643)