Donaldson Type Invariants for Algebraic Surfaces Transition of Moduli Stacks /

We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing for...

Full description

Bibliographic Details
Main Author: Mochizuki, Takuro. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1972
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-93913-9
LEADER 02329nam a22003975i 4500
001 6786
003 DE-He213
005 20130725191658.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540939139  |9 978-3-540-93913-9 
024 7 # |a 10.1007/978-3-540-93913-9  |2 doi 
100 1 # |a Mochizuki, Takuro.  |e author. 
245 1 0 |a Donaldson Type Invariants for Algebraic Surfaces  |b Transition of Moduli Stacks /  |c by Takuro Mochizuki.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1972  |x 0075-8434 ; 
505 0 # |a 1. Introduction -- 2. Preliminaries -- 3. Parabolic L-Bradlow pairs -- 4. Geometric Invariant Theory and Enhanced Master Space -- 5. Obstruction Theories of Moduli Stacks and Master Spaces -- 6. Virtual Fundamental Classes -- 7. Invariants. 
520 # # |a We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case! 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540939122 
830 # 0 |a Lecture Notes in Mathematics,  |v 1972  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-93913-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)