Modeling Uncertainty with Fuzzy Logic With Recent Theory and Applications /

The objective of this book is to present an uncertainty modeling approach using a new type of fuzzy system model via "Fuzzy Functions". Since most researchers on fuzzy systems are more familiar with the standard fuzzy rule bases and their inference system structures, many standard tools of...

Full description

Bibliographic Details
Main Authors: Celikyilmaz, Asli. (Author), T<U+00fc>rksen, I. Burhan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Fuzziness and Soft Computing, 240
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89924-2
LEADER 02884nam a22004815i 4500
001 6687
003 DE-He213
005 20130725191511.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540899242  |9 978-3-540-89924-2 
024 7 # |a 10.1007/978-3-540-89924-2  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Celikyilmaz, Asli.  |e author. 
245 1 0 |a Modeling Uncertainty with Fuzzy Logic  |b With Recent Theory and Applications /  |c by Asli Celikyilmaz, I. Burhan T<U+00fc>rksen.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Fuzziness and Soft Computing,  |v 240  |x 1434-9922 ; 
505 0 # |a Introduction -- Fuzzy Sets and Systems -- Improved Fuzzy Clustering -- Fuzzy Functions Approach -- Modeling Uncertainty with Improved Fuzzy Functions -- Experiments -- Conclusions and Future Work. 
520 # # |a The objective of this book is to present an uncertainty modeling approach using a new type of fuzzy system model via "Fuzzy Functions". Since most researchers on fuzzy systems are more familiar with the standard fuzzy rule bases and their inference system structures, many standard tools of fuzzy system modeling approaches are reviewed to demonstrate the novelty of the structurally different fuzzy functions, before we introduced the new methodologies. To make the discussions more accessible, no special fuzzy logic and system modeling knowledge is assumed. Therefore, the book itself may be a reference for some related methodologies to most researchers on fuzzy systems analyses. For those readers, who have knowledge of essential fuzzy theories, Chapter 1, 2 should be treated as a review material. Advanced readers ought to be able to read chapters 3, 4 and 5 directly, where proposed methods are presented. Chapter 6 demonstrates experiments conducted on various datasets. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a T<U+00fc>rksen, I. Burhan.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540899235 
830 # 0 |a Studies in Fuzziness and Soft Computing,  |v 240  |x 1434-9922 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89924-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)