Rough Set Theory: A True Landmark in Data Analysis

Along the years, rough set theory has earned a well-deserved reputation as a sound methodology for dealing with imperfect knowledge in a simple though mathematically sound way. This edited volume aims at continue stressing the benefits of applying rough sets in many real-life situations while still...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Abraham, Ajith. (Editor), Falcn̤, Rafael. (Editor), Bello, Rafael. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 174
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89921-1
LEADER 03658nam a22004935i 4500
001 6686
003 DE-He213
005 20130725190713.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540899211  |9 978-3-540-89921-1 
024 7 # |a 10.1007/978-3-540-89921-1  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Abraham, Ajith.  |e editor. 
245 1 0 |a Rough Set Theory: A True Landmark in Data Analysis  |c edited by Ajith Abraham, Rafael Falcn̤, Rafael Bello.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 174  |x 1860-949X ; 
505 0 # |a Part I Theoretical Contributions to Rough Set Theory -- Rough Sets on Fuzzy Approximation Spaces and Intuitionistic Fuzzy Approximation Spaces -- Categorical Innovations for Rough Sets -- Granular Structures and Approximations in Rough Sets and Knowledge Spaces -- On Approximation of Classifications, Rough Equalities and Rough Equivalences -- Part II Rough Set Data Mining Activities -- Rough Clustering with Partial Supervision -- A Generic Scheme for Generating Prediction Rules Using Rough Sets -- Rough Web Caching -- Software Defect Classification: A Comparative Study of Rough-Neuro-Fuzzy Hybrid Approaches with Linear and Non-Linear SVMs -- Part III Rough Hybrid Models to Classification and Attribute Reduction -- Rough Sets and Evolutionary Computation to Solve the Feature Selection Problem -- Nature Inspired Population-based Heuristics for Rough Set Reduction -- Developing a Knowledge-based System using Rough Set Theory and Genetic Algorithms for Substation Fault Diagnosis. 
520 # # |a Along the years, rough set theory has earned a well-deserved reputation as a sound methodology for dealing with imperfect knowledge in a simple though mathematically sound way. This edited volume aims at continue stressing the benefits of applying rough sets in many real-life situations while still keeping an eye on topological aspects of the theory as well as strengthening its linkage with other soft computing paradigms. The volume comprises 11 chapters and is organized into three parts. Part 1 deals with theoretical contributions while Parts 2 and 3 focus on several real world data mining applications. Chapters authored by pioneers were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed. Academics, scientists as well as engineers working in the rough set, computational intelligence, soft computing and data mining research area will find the comprehensive coverage of this book invaluable. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Falcn̤, Rafael.  |e editor. 
700 1 # |a Bello, Rafael.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540899204 
830 # 0 |a Studies in Computational Intelligence,  |v 174  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89921-1 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)