Noncommutative Spacetimes Symmetries in Noncommutative Geometry and Field Theory /

There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of th...

Full description

Bibliographic Details
Main Authors: Aschieri, Paolo. (Author), Dimitrijevic, Marija. (Author), Kulish, Petr. (Author), Lizzi, Fedele. (Author), Wess, Julius. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Physics, 774
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89793-4
LEADER 03100nam a22005415i 4500
001 6678
003 DE-He213
005 20130725192249.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540897934  |9 978-3-540-89793-4 
024 7 # |a 10.1007/978-3-540-89793-4  |2 doi 
050 # 4 |a QC5.53 
072 # 7 |a PHU  |2 bicssc 
072 # 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 # |a Aschieri, Paolo.  |e author. 
245 1 0 |a Noncommutative Spacetimes  |b Symmetries in Noncommutative Geometry and Field Theory /  |c by Paolo Aschieri, Marija Dimitrijevic, Petr Kulish, Fedele Lizzi, Julius Wess.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Physics,  |v 774  |x 0075-8450 ; 
505 0 # |a Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg-Witten Approach -- Another Example of Noncommutative Spaces: K-Deformed Space -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformation of Quantum Integrable Spin Chains -- Julius Wess Noncommutative Geometry -- Index. 
520 # # |a There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field. 
650 # 0 |a Physics. 
650 # 0 |a Group theory. 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Quantum Physics. 
700 1 # |a Dimitrijevic, Marija.  |e author. 
700 1 # |a Kulish, Petr.  |e author. 
700 1 # |a Lizzi, Fedele.  |e author. 
700 1 # |a Wess, Julius.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540897927 
830 # 0 |a Lecture Notes in Physics,  |v 774  |x 0075-8450 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89793-4 
912 # # |a ZDB-2-PHA 
912 # # |a ZDB-2-LNP 
950 # # |a Physics and Astronomy (Springer-11651)