Penalising Brownian Paths
Penalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one. We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theor...
Main Authors: | , |
---|---|
Corporate Author: | |
Format: | Electronic |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Series: | Lecture Notes in Mathematics,
1969 |
Subjects: | |
Online Access: | https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89699-9 |
Summary: | Penalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one. We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role. A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account. |
---|---|
Physical Description: | online resource. |
ISBN: | 9783540896999 |
ISSN: | 0075-8434 ; |