Bohmian Mechanics The Physics and Mathematics of Quantum Theory /

Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experim...

Full description

Bibliographic Details
Main Authors: Teufel, Stefan. (Author), D<U+00fc>rr, Detlef. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b99978
LEADER 03143nam a22004815i 4500
001 6650
003 DE-He213
005 20130725191753.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540893448  |9 978-3-540-89344-8 
024 7 # |a 10.1007/b99978  |2 doi 
100 1 # |a Teufel, Stefan.  |e author. 
245 1 0 |a Bohmian Mechanics  |b The Physics and Mathematics of Quantum Theory /  |c by Stefan Teufel, Detlef D<U+00fc>rr.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XII, 393 pgs. with 41 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Introduction -- Classical Physics -- Symmetry -- Chance -- Brownian motion -- The Beginning of Quantum Theory -- Schrd̲inger<U+0019>s Equation -- Bohmian Mechanics -- The MacroscopicWorld -- Nonlocality -- The Wave Function and Quantum Equilibrium -- From Physics to Mathematics -- Hilbert Space -- The Schrd̲inger Operator -- Measures and Operators -- Bohmian Mechanics on Scattering Theory -- Epilogue. 
520 # # |a Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schrd̲inger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. 
650 # 0 |a Physics. 
650 # 0 |a Science  |x Philosophy. 
650 # 0 |a Functional analysis. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Quantum theory. 
650 # 0 |a Mathematical physics. 
650 # 0 |a Statistical physics. 
650 1 4 |a Physics. 
650 2 4 |a Philosophy of Science. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Physics. 
700 1 # |a D<U+00fc>rr, Detlef.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540893431 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/b99978 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)