Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds

The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some...

Full description

Bibliographic Details
Main Author: Weissauer, Rainer. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1968
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89306-6
LEADER 02511nam a22004455i 4500
001 6647
003 DE-He213
005 20130725191740.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540893066  |9 978-3-540-89306-6 
024 7 # |a 10.1007/978-3-540-89306-6  |2 doi 
100 1 # |a Weissauer, Rainer.  |e author. 
245 1 0 |a Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds  |c by Rainer Weissauer.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1968  |x 0075-8434 ; 
505 0 # |a 1 An Application of the Hard Lefschetz Theorem -- 2 CAP-Localization -- 3 The Ramanujan Conjecture for Genus two Siegel modular Forms -- 4 Character Identities and Galois Representations related to the group GSp(4) -- 5 Endoscopy for GSp(4) -- 6 A special Case of the Fundamental Lemma I -- 7 A special Case of the Fundamental Lemma II -- 8 The Langlands-Shelstad transfer factor -- 9 Fundamental lemma (twisted case) -- 10 Reduction to unit elements -- 11 Appendix on Galois cohomology -- 12 Appendix on double cosets. 
520 # # |a The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some basic results on their cohomology groups are derived in this book from considering topological trace formulas. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Number theory. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Number Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540893059 
830 # 0 |a Lecture Notes in Mathematics,  |v 1968  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-89306-6 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)