Operator-Valued Measures and Integrals for Cone-Valued Functions

Integration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions. Different approaches are applied in each of these cases using different techniques. The order structure of the (extended) real number system is used for real-valued functions and measures, w...

Full description

Bibliographic Details
Main Author: Roth, Walter. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1964
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-87565-9
LEADER 02366nam a22004575i 4500
001 6517
003 DE-He213
005 20130725190619.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540875659  |9 978-3-540-87565-9 
024 7 # |a 10.1007/978-3-540-87565-9  |2 doi 
050 # 4 |a QA312-312.5 
072 # 7 |a PBKL  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.42  |2 23 
100 1 # |a Roth, Walter.  |e author. 
245 1 0 |a Operator-Valued Measures and Integrals for Cone-Valued Functions  |c by Walter Roth.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1964  |x 0075-8434 ; 
505 0 # |a Introduction -- 1. Locally Convex Cones -- 2. Measures and Integrals. The General Theory -- 3. Measures on Locally Compact Spaces -- List of Symbols -- Bibliography -- Index. 
520 # # |a Integration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions. Different approaches are applied in each of these cases using different techniques. The order structure of the (extended) real number system is used for real-valued functions and measures, whereas suprema and infima are replaced with topological limits in the vector-valued case. A novel approach employing more general structures, locally convex cones, which are natural generalizations of locally convex vector spaces, is introduced here. This setting allows developing a general theory of integration which simultaneously deals with all of the above-mentioned cases. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Functional Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540875642 
830 # 0 |a Lecture Notes in Mathematics,  |v 1964  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-87565-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)