Deconvolution Problems in Nonparametric Statistics

This book gives an introduction to deconvolution problems in nonparametric statistics, e.g. density estimation based on contaminated data, errors-in-variables regression, and image reconstruction. Some real-life applications are discussed while we mainly focus on methodology (description of the esti...

Full description

Bibliographic Details
Main Author: Meister, Alexander. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Statistics, 193
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-87557-4
LEADER 02234nam a22004335i 4500
001 6515
003 DE-He213
005 20130726225926.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540875574  |9 978-3-540-87557-4 
024 7 # |a 10.1007/978-3-540-87557-4  |2 doi 
050 # 4 |a QA276-280 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 # |a Meister, Alexander.  |e author. 
245 1 0 |a Deconvolution Problems in Nonparametric Statistics  |c by Alexander Meister.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a VI, 210p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Statistics,  |v 193  |x 0930-0325 ; 
505 0 # |a Introduction -- Density Deconvolution -- Nonparametric Regression with Errors-in-variables -- Image and Signal Reconstruction -- Tools from Fourier Analysis. 
520 # # |a This book gives an introduction to deconvolution problems in nonparametric statistics, e.g. density estimation based on contaminated data, errors-in-variables regression, and image reconstruction. Some real-life applications are discussed while we mainly focus on methodology (description of the estimation procedures) and theory (minimax convergence rates with rigorous proofs and adaptive smoothing parameter selection). In general, we have tried to present the proofs in such manner that only a low level of previous knowledge is needed. An appendix chapter on further results of Fourier analysis is also provided. 
650 # 0 |a Statistics. 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540875567 
830 # 0 |a Lecture Notes in Statistics,  |v 193  |x 0930-0325 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-87557-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)