Local Lyapunov Exponents Sublimiting Growth Rates of Linear Random Differential Equations /
Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-int...
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2009.
|
Series: | Lecture Notes in Mathematics,
1963 |
Subjects: | |
Online Access: | https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85964-2 |
Summary: | Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too. |
---|---|
Physical Description: | IX, 254 p. online resource. |
ISBN: | 9783540859642 |
ISSN: | 0075-8434 ; |