Summary: | This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.
|