Optimal Urban Networks via Mass Transportation

Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network,...

Full description

Bibliographic Details
Main Authors: Buttazzo, Giuseppe. (Author), Pratelli, Aldo. (Author), Stepanov, Eugene. (Author), Solimini, Sergio. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1961
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85799-0
LEADER 02869nam a22004815i 4500
001 6478
003 DE-He213
005 20130725205401.0
007 cr nn 008mamaa
008 110406s2009 gw | s |||| 0|eng d
020 # # |a 9783540857990  |9 978-3-540-85799-0 
024 7 # |a 10.1007/978-3-540-85799-0  |2 doi 
100 1 # |a Buttazzo, Giuseppe.  |e author. 
245 1 0 |a Optimal Urban Networks via Mass Transportation  |c by Giuseppe Buttazzo, Aldo Pratelli, Eugene Stepanov, Sergio Solimini.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a X, 150p. 15 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1961  |x 0075-8434 ; 
505 0 # |a 1 Introduction -- 2 Problem setting -- 3 Optimal connected networks -- 4 Relaxed problem and existence of solutions -- 5 Topological properties of optimal sets -- 6 Optimal sets and geodesics in the two y dimensional case -- Appendix A The mass transportation problem -- Appendix B Some tools from Geometric Measure Theory. 
520 # # |a Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where" optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori. 
650 # 0 |a Mathematics. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Operations research. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operations Research, Mathematical Programming. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 # |a Pratelli, Aldo.  |e author. 
700 1 # |a Stepanov, Eugene.  |e author. 
700 1 # |a Solimini, Sergio.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540857983 
830 # 0 |a Lecture Notes in Mathematics,  |v 1961  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85799-0 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)