Self-Normalized Processes Limit Theory and Statistical Applications /

Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long...

Full description

Bibliographic Details
Main Authors: Peą, Victor H. (Author), Lai, Tze Leung. (Author), Shao, Qi-Man. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Probability and its Applications,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85636-8
LEADER 03934nam a22005055i 4500
001 6460
003 DE-He213
005 20130725190723.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540856368  |9 978-3-540-85636-8 
024 7 # |a 10.1007/978-3-540-85636-8  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Peą, Victor H.  |e author. 
245 1 0 |a Self-Normalized Processes  |b Limit Theory and Statistical Applications /  |c by Victor H. Peą, Tze Leung Lai, Qi-Man Shao.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XIII, 275 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Probability and its Applications,  |x 1431-7028 
505 0 # |a 1. Introduction -- Part I Independent Random Variables -- 2. Classical Limit Theorems and Preliminary Tools -- 3. Self-Normalized Large Deviations -- 4. Weak Convergence of Self-Normalized Sums -- 5. Stein<U+0019>s Method and Self-Normalized Berry<U+0013>Esseen Inequality -- 6. Self-Normalized Moderate Deviations and Law of the Iterated Logarithm -- 7. Cramř-type Moderate Deviations for Self-Normalized Sums -- 8. Self-Normalized Empirical Processes and U-Statistics -- Part II Martingales and Dependent Random Vectors -- 9. Martingale Inequalities and Related Tools -- 10. A General Framework for Self-Normalization -- 11. Pseudo-Maximization via Method of Mixtures -- 12. Moment and Exponential Inequalities for Self-Normalized Processes -- 13. Laws of the Iterated Logarithm for Self-Normalized Processes and Martingales -- 14. Multivariate Matrix-Normalized Processes -- Part III Statistical Applications -- 15. The t-Statistic and Studentized Statistics -- 16. Self-Normalization and Approximate Pivots for Bootstrapping -- 17. Self-Normalized Martingales and Pseudo-Maximization in Likelihood or Bayesian Inference -- 18. Information Bounds and Boundary Crossing Probabilities for Self-Normalized Statistics in Sequential Analysis -- References -- Index. 
520 # # |a Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long period of slow development. In recent years there have been a number of important advances in the theory and applications of self-normalized processes. Some of these developments are closely linked to the study of central limit theorems, which imply that self-normalized processes are approximate pivots for statistical inference. The present volume covers recent developments in the area, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales. This is the first book that systematically treats the theory and applications of self-normalization. 
650 # 0 |a Mathematics. 
650 # 0 |a Distribution (Probability theory). 
650 # 0 |a Mathematical statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
700 1 # |a Lai, Tze Leung.  |e author. 
700 1 # |a Shao, Qi-Man.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540856351 
830 # 0 |a Probability and its Applications,  |x 1431-7028 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85636-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)