Conjugate Gradient Algorithms in Nonconvex Optimization

This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and l...

Full description

Bibliographic Details
Main Author: Pytlak, RadosBaw. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Nonconvex Optimization and Its Applications, 89
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85634-4
LEADER 03449nam a22005175i 4500
001 6459
003 DE-He213
005 20130725190332.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540856344  |9 978-3-540-85634-4 
024 7 # |a 10.1007/978-3-540-85634-4  |2 doi 
050 # 4 |a QA315-316 
050 # 4 |a QA402.3 
050 # 4 |a QA402.5-QA402.6 
072 # 7 |a PBKQ  |2 bicssc 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT005000  |2 bisacsh 
072 # 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 # |a Pytlak, RadosBaw.  |e author. 
245 1 0 |a Conjugate Gradient Algorithms in Nonconvex Optimization  |c by RadosBaw Pytlak.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XXVI, 477 p. 95 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Nonconvex Optimization and Its Applications,  |v 89  |x 1571-568X ; 
505 0 # |a Conjugate directions methods for quadratic problems -- Conjugate gradient methods for nonconvex problems -- Memoryless quasi-Newton methods -- Preconditioned conjugate gradient algorithms -- Limited memory quasi-Newton algorithms -- A method of shortest residuals and nondifferentiable optimization -- The method of shortest residuals for smooth problems -- The preconditioned shortest residuals algorithm -- Optimization on a polyhedron -- Problems with box constraints -- The preconditioned shortest residuals algorithm with box -- Conjugate gradient reduced-Hessian method -- Elements of topology and analysis -- Elements of linear algebra. 
520 # # |a This up-to-date book is on algorithms for large-scale unconstrained and bound constrained optimization. Optimization techniques are shown from a conjugate gradient algorithm perspective. Large part of the book is devoted to preconditioned conjugate gradient algorithms. In particular memoryless and limited memory quasi-Newton algorithms are presented and numerically compared to standard conjugate gradient algorithms. The special attention is paid to the methods of shortest residuals developed by the author. Several effective optimization techniques based on these methods are presented. Because of the emphasis on practical methods, as well as rigorous mathematical treatment of their convergence analysis, the book is aimed at a wide audience. It can be used by researches in optimization, graduate students in operations research, engineering, mathematics and computer science. Practitioners can benefit from numerous numerical comparisons of professional optimization codes discussed in the book. 
650 # 0 |a Mathematics. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a System safety. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Operations Research/Decision Theory. 
650 2 4 |a Quality Control, Reliability, Safety and Risk. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540856337 
830 # 0 |a Nonconvex Optimization and Its Applications,  |v 89  |x 1571-568X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85634-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)