Bio-inspired Algorithms for the Vehicle Routing Problem

The vehicle routing problem (VRP) is one of the most famous combinatorial optimization problems. In simple terms, the goal is to determine a set of routes with overall minimum cost that can satisfy several geographical scattered demands. Biological inspired computation is a field devoted to the deve...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Pereira, Francisco Babtista. (Editor), Tavares, Jorge. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Studies in Computational Intelligence, 161
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85152-3
LEADER 03464nam a22004815i 4500
001 6415
003 DE-He213
005 20130725185703.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540851523  |9 978-3-540-85152-3 
024 7 # |a 10.1007/978-3-540-85152-3  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Pereira, Francisco Babtista.  |e editor. 
245 1 0 |a Bio-inspired Algorithms for the Vehicle Routing Problem  |c edited by Francisco Babtista Pereira, Jorge Tavares.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 161  |x 1860-949X ; 
505 0 # |a A Review of Bio-Inspired Algorithms for Vehicle Routing -- A GRASP _ Evolutionary Local Search Hybrid for the Vehicle Routing Problem -- An Evolutionary Algorithm for the Open Vehicle Routing Problem with Time Windows -- Using genetic algorithms for multi-depot vehicle routing -- Hybridizing Problem-Specific Operators with Meta-Heuristics for Solving the Multi-Objective Vehicle Routing Problem with Stochastic Demand -- Exploiting Fruitful Regions in Dynamic Routing using Evolutionary Computation -- EVITA: an Integral Evolutionary Methodology for the Inventory and Transportation Problem -- A memetic algorithm for a pick-up and delivery problem by helicopter -- When the rubber meets the road: Bio-inspired field service scheduling in the real world. 
520 # # |a The vehicle routing problem (VRP) is one of the most famous combinatorial optimization problems. In simple terms, the goal is to determine a set of routes with overall minimum cost that can satisfy several geographical scattered demands. Biological inspired computation is a field devoted to the development of computational tools modeled after principles that exist in natural systems. The adoption of such design principles enables the production of problem solving techniques with enhanced robustness and flexibility, able to tackle complex optimization situations. The goal of the volume is to present a collection of state-of-the-art contributions describing recent developments concerning the application of bio-inspired algorithms to the VRP. Over the 9 chapters, different algorithmic approaches are considered and a diverse set of problem variants are addressed. Some contributions focus on standard benchmarks widely adopted by the research community, while others address real-world situations. 
650 # 0 |a Engineering. 
650 # 0 |a Software engineering. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Software Engineering. 
650 2 4 |a Operations Research/Decision Theory. 
700 1 # |a Tavares, Jorge.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540851516 
830 # 0 |a Studies in Computational Intelligence,  |v 161  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-85152-3 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)