Finite Automata and Application to Cryptography

Finite Automata and Application to Cryptography mainly deals with the invertibility theory of finite automata and its application to cryptography. In addition, autonomous finite automata and Latin arrays, which are relative to the canonical form for one-key cryptosystems based on finite automata, ar...

Full description

Bibliographic Details
Main Author: Tao, Renji. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-78257-5
LEADER 02843nam a22004815i 4500
001 6349
003 DE-He213
005 20130725191327.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540782575  |9 978-3-540-78257-5 
024 7 # |a 10.1007/978-3-540-78257-5  |2 doi 
050 # 4 |a QA76.9.A25 
072 # 7 |a URY  |2 bicssc 
072 # 7 |a COM053000  |2 bisacsh 
082 0 4 |a 005.82  |2 23 
100 1 # |a Tao, Renji.  |e author. 
245 1 0 |a Finite Automata and Application to Cryptography  |c by Renji Tao.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Chapter 1 Introduction -- Chapter 2 Mutual Invertibility and Search -- Chapter 3 R_a R_b Transformation Method -- Chapter 4 Relations Between Transformations -- Chapter 5 Structure of Feedforward Inverses -- Chapter 6 Some Topics on Structure Problem -- Chapter 7 Linear Autonomous Finite Automata -- Chapter 8 One Key Cryptosystems and Latin Arrays -- Chapter 9 Finite Automaton Public Key Cryptosystems. 
520 # # |a Finite Automata and Application to Cryptography mainly deals with the invertibility theory of finite automata and its application to cryptography. In addition, autonomous finite automata and Latin arrays, which are relative to the canonical form for one-key cryptosystems based on finite automata, are also discussed. Finite automata are regarded as a natural model for ciphers. The Ra Rb transformation method is introduced to deal with the structure problem of such automata; then public key cryptosystems based on finite automata and a canonical form for one-key ciphers implementable by finite automata with bounded-error-propagation and without data expansion are proposed. The book may be used as a reference for computer science and mathematics majors, including seniors and graduate students. Renji Tao is a Professor at the Institute of Software, Chinese Academy of Sciences, Beijing. 
650 # 0 |a Computer science. 
650 # 0 |a Computer Communication Networks. 
650 # 0 |a Data protection. 
650 # 0 |a Data encryption (Computer science). 
650 # 0 |a Mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Encryption. 
650 2 4 |a Systems and Data Security. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Computer Communication Networks. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540782568 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-78257-5 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)