Algebraic Function Fields and Codes

The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings an...

Full description

Bibliographic Details
Main Author: Stichtenoth, Henning. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Graduate Texts in Mathematics, 254
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-76878-4
LEADER 03310nam a22005175i 4500
001 6311
003 DE-He213
005 20130725191023.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540768784  |9 978-3-540-76878-4 
024 7 # |a 10.1007/978-3-540-76878-4  |2 doi 
050 # 4 |a QA150-272 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 # |a Stichtenoth, Henning.  |e author. 
245 1 0 |a Algebraic Function Fields and Codes  |c by Henning Stichtenoth.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |a XIII, 355 p. 14 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Graduate Texts in Mathematics,  |v 254  |x 0072-5285 ; 
505 0 # |a 1. Foundations of the Theory of Algebraic Function Fiels -- 2. Algebraic Geometry Codes -- 3. Extensions of Algebraic Function Fields -- 4. Differentials of Algebraic Function Fields -- 5. Algebraic Function Fields over Finite Constant Fields -- 6. Examples of Algebraic Function Fields -- 7. Asymptotic Bounds for the Number of Rational Places -- 8. More about Algebraic Geometry Codes -- 9. Subfield Subcodes and Trace Codes -- Appendix A. Field Theory -- Appendix B. Algebraic Curves and Algebraic Function Fields -- Bibliography -- List of Notations -- Index. 
520 # # |a The theory of algebraic function fields has its origins in number theory, complex analysis (compact Riemann surfaces), and algebraic geometry. Since about 1980, function fields have found surprising applications in other branches of mathematics such as coding theory, cryptography, sphere packings and others. The main objective of this book is to provide a purely algebraic, self-contained and in-depth exposition of the theory of function fields. This new edition, published in the series Graduate Texts in Mathematics, has been considerably expanded. Moreover, the present edition contains numerous exercises. Some of them are fairly easy and help the reader to understand the basic material. Other exercises are more advanced and cover additional material which could not be included in the text. This volume is mainly addressed to graduate students in mathematics and theoretical computer science, cryptography, coding theory and electrical engineering. 
650 # 0 |a Mathematics. 
650 # 0 |a Data structures (Computer science). 
650 # 0 |a Algebra. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Information and Communication, Circuits. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540768777 
830 # 0 |a Graduate Texts in Mathematics,  |v 254  |x 0072-5285 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-76878-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)