Optimal Transport Old and New /

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. Th...

Full description

Bibliographic Details
Main Author: Villani, Cďric. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 338
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-71050-9
LEADER 02857nam a22004815i 4500
001 6253
003 DE-He213
005 20130725190137.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540710509  |9 978-3-540-71050-9 
024 7 # |a 10.1007/978-3-540-71050-9  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Villani, Cďric.  |e author. 
245 1 0 |a Optimal Transport  |b Old and New /  |c by Cďric Villani.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |v 338  |x 0072-7830 ; 
505 0 # |a Introduction -- Qualitative Description of Optimal Transport -- Optimal Transport and Riemannian Geometry -- Synthetic Treatment of Ricci Curvature -- Conclusions and Open Problems. 
520 # # |a At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book<U+0019>s value as a most welcome reference text on this subject. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Global differential geometry. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Differential Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540710493 
830 # 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |v 338  |x 0072-7830 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-71050-9 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)