Large Random Matrices: Lectures on Macroscopic Asymptotics École d'ẗØ de ProbabilitØs de Saint-Flour XXXVI ¿ 2006 /

Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the...

Full description

Bibliographic Details
Main Author: Guionnet, Alice. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Lecture Notes in Mathematics, 1957
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69897-5
LEADER 02625nam a22004695i 4500
001 6222
003 DE-He213
005 20130725191659.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540698975  |9 978-3-540-69897-5 
024 7 # |a 10.1007/978-3-540-69897-5  |2 doi 
100 1 # |a Guionnet, Alice.  |e author. 
245 1 0 |a Large Random Matrices: Lectures on Macroscopic Asymptotics  |b École d'ẗØ de ProbabilitØs de Saint-Flour XXXVI ¿ 2006 /  |c by Alice Guionnet.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1957  |x 0075-8434 ; 
505 0 # |a Notation -- Introduction -- Part I Wigner matrices and moments estimates -- Part II Wigner matrices and concentration inequalities -- Part III Matrix models -- Part IV Eigenvalues of Gaussian Wigner matrices and large deviations -- Part V Stochastic Calculus -- Part VI Free probability -- Part VII Appendix -- References -- Index. 
520 # # |a Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the asymptotic distribution of matrices, which is naturally defined in the context of free probability and operator algebra. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Maury Bramson and Steffen Lauritzen. 
650 # 0 |a Mathematics. 
650 # 0 |a Matrix theory. 
650 # 0 |a Functional analysis. 
650 # 0 |a Combinatorics. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540698968 
830 # 0 |a Lecture Notes in Mathematics,  |v 1957  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69897-5 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)