Theory of Sobolev Multipliers With Applications to Differential and Integral Operators /

The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part...

Full description

Bibliographic Details
Main Authors: Maz'ya, Vladimir G. (Author), Shaposhnikova, Tatyana O. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Grundlehren der mathematischen Wissenschaften, 337
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69492-2
LEADER 03067nam a22004935i 4500
001 6215
003 DE-He213
005 20130725190001.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540694922  |9 978-3-540-69492-2 
024 7 # |a 10.1007/978-3-540-69492-2  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Maz'ya, Vladimir G.  |e author. 
245 1 0 |a Theory of Sobolev Multipliers  |b With Applications to Differential and Integral Operators /  |c by Vladimir G. Maz'ya, Tatyana O. Shaposhnikova.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Grundlehren der mathematischen Wissenschaften,  |v 337  |x 0072-7830 ; 
505 0 # |a Introduction -- Part I. Description and Properties of Multipliers -- Part II. Applications of Multipliers to Differential and Integral Operators -- References -- List of Symbols -- Subject Index. 
520 # # |a The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present volume is mainly based on their results. Part I is devoted to the theory of multipliers and encloses the following topics: trace inequalities, analytic characterization of multipliers, relations between spaces of Sobolev multipliers and other function spaces, maximal subalgebras of multiplier spaces, traces and extensions of multipliers, essential norm and compactness of multipliers, and miscellaneous properties of multipliers. Part II concerns several applications of this theory: continuity and compactness of differential operators in pairs of Sobolev spaces, multipliers as solutions to linear and quasilinear elliptic equations, higher regularity in the single and double layer potential theory for Lipschitz domains, regularity of the boundary in $L_p$-theory of elliptic boundary value problems, and singular integral operators in Sobolev spaces. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional analysis. 
650 # 0 |a Integral equations. 
650 # 0 |a Differential equations, partial. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Integral Equations. 
700 1 # |a Shaposhnikova, Tatyana O.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540694908 
830 # 0 |a Grundlehren der mathematischen Wissenschaften,  |v 337  |x 0072-7830 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69492-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)