Proof Theory The First Step into Impredicativity /

This book verifies with compelling evidence the author<U+0019>s intent to "write a book on proof theory that needs no previous knowledge of proof theory". Avoiding the cryptic terminology of proof theory as far as possible, the book starts at an elementary level and displays the conn...

Full description

Bibliographic Details
Main Author: Pohlers, Wolfram. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Series:Universitext
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69319-2
LEADER 03732nam a22004455i 4500
001 6204
003 DE-He213
005 20130725185908.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 # # |a 9783540693192  |9 978-3-540-69319-2 
024 7 # |a 10.1007/978-3-540-69319-2  |2 doi 
050 # 4 |a QA8.9-10.3 
072 # 7 |a PBC  |2 bicssc 
072 # 7 |a PBCD  |2 bicssc 
072 # 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 # |a Pohlers, Wolfram.  |e author. 
245 1 0 |a Proof Theory  |b The First Step into Impredicativity /  |c by Wolfram Pohlers.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Universitext 
505 0 # |a 1 Historical Background -- 2 Primitive Recursive Functions and Relations -- 3 Ordinals -- 4 Pure Logic -- 5 Truth Complexities for Pi 1-1-Sentences -- 6 Inductive Definitions -- 7 The Ordinal Analysis for Pean Arithmetic -- 8 Autonomous Ordinals and the Limits of Predicativity -- 9 Ordinal Analysis of the Theory for Inductive Definitions -- 10 Provably Recursive Functions of NT -- 11 Ordinal Analysis for Kripke Platek Set Theory with infinity -- 12 Predicativity Revisited -- 13 Non-Monotone Inductive Definitions -- 14 Epilogue. 
520 # # |a This book verifies with compelling evidence the author<U+0019>s intent to "write a book on proof theory that needs no previous knowledge of proof theory". Avoiding the cryptic terminology of proof theory as far as possible, the book starts at an elementary level and displays the connections between infinitary proof theory and generalized recursion theory, especially the theory of inductive definitions. As a "warm up" Gentzen's classical analysis of pure number theory is presented in a more modern terminology, followed by an explanation and proof of the famous result of Feferman and Sch<U+00fc>tte on the limits of predicativity. The author also provides an introduction to ordinal arithmetic, introduces the Veblen hierarchy and employs these functions to design an ordinal notation system for the ordinals below Epsilon 0 and Gamma 0, while emphasizing the first step into impredicativity, that is, the first step beyond Gamma 0. This is first done by an analysis of the theory of non-iterated inductive definitions using Buchholz<U+0019>s improvement of local predicativity, followed by Weiermann's observation that Buchholz<U+0019>s method can also be used for predicative theories to characterize their provably recursive functions. A second example presents an ordinal analysis of the theory of $/Pi_2$ reflection, a subsystem of set theory that is proof-theoretically equivalent to Kripke-Platek set. The book is pitched at undergraduate/graduate level, and thus addressed to students of mathematical logic interested in the basics of proof theory. It can be used for introductory as well as more advanced courses in proof theory. An earlier version of this book was published in 1989 as volume 1407 of the "Lecture Notes in Mathematics" (ISBN 978-3-540-51842-6). 
650 # 0 |a Mathematics. 
650 # 0 |a Logic, Symbolic and mathematical. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540693185 
830 # 0 |a Universitext 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-540-69319-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)