Random Trees An Interplay between Combinatorics and Probability /

Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During the last years research related to (random) trees has been constantly increasing and several asymptotic and probabilistic techniques have been dev...

Full description

Bibliographic Details
Main Author: Drmota, Michael. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Vienna : Springer Vienna, 2009.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-211-75357-6
LEADER 02676nam a22005175i 4500
001 6077
003 DE-He213
005 20130725191625.0
007 cr nn 008mamaa
008 100301s2009 au | s |||| 0|eng d
020 # # |a 9783211753576  |9 978-3-211-75357-6 
024 7 # |a 10.1007/978-3-211-75357-6  |2 doi 
050 # 4 |a QA164-167.2 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 # |a Drmota, Michael.  |e author. 
245 1 0 |a Random Trees  |b An Interplay between Combinatorics and Probability /  |c by Michael Drmota.  |h [electronic resource] : 
264 # 1 |a Vienna :  |b Springer Vienna,  |c 2009. 
300 # # |a XVI, 457 pp. with 72 figures  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During the last years research related to (random) trees has been constantly increasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in different settings. The aim of this book is to provide a thorough introduction into various aspects of trees in random settings and a systematic treatment of the involved mathematical techniques. It should serve as a reference book as well as a basis for future research. One major conceptual aspect is to bridge combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (saddle point techniques, singularity analysis) to various sophisticated techniques in asymptotic probability (martingales, convergence of stochastic processes, concentration inequalities). 
650 # 0 |a Mathematics. 
650 # 0 |a Data structures (Computer science). 
650 # 0 |a Algebra. 
650 # 0 |a Algorithms. 
650 # 0 |a Combinatorics. 
650 # 0 |a Number theory. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Algorithms. 
650 2 4 |a Data Structures. 
650 2 4 |a Algebra. 
650 2 4 |a Number Theory. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783211753552 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-211-75357-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)