Tropical Algebraic Geometry

Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real...

Full description

Bibliographic Details
Main Authors: Itenberg, Illia. (Author), Mikhalkin, Grigory. (Author), Shustin, Eugenii. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Oberwolfach Seminars ; 35
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0048-4
LEADER 02676nam a22004575i 4500
001 6061
003 DE-He213
005 20130725191919.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783034600484  |9 978-3-0346-0048-4 
024 7 # |a 10.1007/978-3-0346-0048-4  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Itenberg, Illia.  |e author. 
245 1 0 |a Tropical Algebraic Geometry  |c by Illia Itenberg, Grigory Mikhalkin, Eugenii Shustin.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Oberwolfach Seminars ;  |v 35 
505 0 # |a Preface -- 1. Introduction to tropical geometry - Images under the logarithm - Amoebas - Tropical curves -- 2. Patchworking of algebraic varieties - Toric geometry - Viro's patchworking method - Patchworking of singular algebraic surfaces - Tropicalization in the enumeration of nodal curves -- 3. Applications of tropical geometry to enumerative geometry - Tropical hypersurfaces - Correspondence theorem - Welschinger invariants -- Bibliography. 
520 # # |a Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real varieties. These notes present an introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
700 1 # |a Mikhalkin, Grigory.  |e author. 
700 1 # |a Shustin, Eugenii.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034600477 
830 # 0 |a Oberwolfach Seminars ;  |v 35 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0048-4 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)