Flag-transitive Steiner Designs

The monograph provides the first full discussion of flag-transitive Steiner designs. This is a central part of the study of highly symmetric combinatorial configurations at the interface of several mathematical disciplines, like finite or incidence geometry, group theory, combinatorics, coding theor...

Full description

Bibliographic Details
Main Author: Huber, Michael. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0002-6
LEADER 03243nam a22004935i 4500
001 6056
003 DE-He213
005 20130725191427.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783034600026  |9 978-3-0346-0002-6 
024 7 # |a 10.1007/978-3-0346-0002-6  |2 doi 
050 # 4 |a QA639.5-640.7 
050 # 4 |a QA640.7-640.77 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a PBD  |2 bicssc 
072 # 7 |a MAT012020  |2 bisacsh 
072 # 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
100 1 # |a Huber, Michael.  |e author. 
245 1 0 |a Flag-transitive Steiner Designs  |c by Michael Huber.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Frontiers in Mathematics,  |x 1660-8046 
505 0 # |a Preface -- 1. Incidence Structures and Steiner Designs -- 2. Permutation Groups and Group Actions -- 3. Number Theoretical Tools -- 4. Highly Symmetric Steiner Designs -- 5. A Census of Highly Symmetric Steiner Designs -- 6. The Classification of Flag-transitive Steiner Quadruple Systems -- 7. The Classification of Flag-transitive Steiner 3-Designs -- 8. The Classification of Flag-transitive Steiner 4-Designs -- 9. The Classification of Flag-transitive Steiner 5-Designs -- 10. The Non-Existence of Flag-transitive Steiner 6-Designs -- References -- Index. 
520 # # |a The monograph provides the first full discussion of flag-transitive Steiner designs. This is a central part of the study of highly symmetric combinatorial configurations at the interface of several mathematical disciplines, like finite or incidence geometry, group theory, combinatorics, coding theory, and cryptography. In a sufficiently self-contained and unified manner the classification of all flag-transitive Steiner designs is presented. This recent result settles interesting and challenging questions that have been object of research for more than 40 years. Its proof combines methods from finite group theory, incidence geometry, combinatorics, and number theory. The book contains a broad introduction to the topic, along with many illustrative examples. Moreover, a census of some of the most general results on highly symmetric Steiner designs is given in a survey chapter. The monograph is addressed to graduate students in mathematics and computer science as well as established researchers in design theory, finite or incidence geometry, coding theory, cryptography, algebraic combinatorics, and more generally, discrete mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Combinatorics. 
650 # 0 |a Discrete groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Combinatorics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783034600019 
830 # 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0002-6 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)