Schwarz-Pick Type Inequalities

This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps...

Full description

Bibliographic Details
Main Authors: Avkhadiev, Farit G. (Author), Wirths, Karl-Joachim. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Basel : Birkhũser Basel, 2009.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0000-2
LEADER 02335nam a22004335i 4500
001 6055
003 DE-He213
005 20130725191546.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 # # |a 9783034600002  |9 978-3-0346-0000-2 
024 7 # |a 10.1007/978-3-0346-0000-2  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Avkhadiev, Farit G.  |e author. 
245 1 0 |a Schwarz-Pick Type Inequalities  |c by Farit G. Avkhadiev, Karl-Joachim Wirths.  |h [electronic resource] / 
264 # 1 |a Basel :  |b Birkhũser Basel,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Frontiers in Mathematics,  |x 1660-8046 
520 # # |a This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincar ̌metric, and a successful combination of the classical ideas of Littlewood, Lw̲ner and Teichm<U+00fc>ller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems. The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
700 1 # |a Wirths, Karl-Joachim.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783764399993 
830 # 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-0346-0000-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)