Introduction to Analytical Dynamics Revised Edition /

Analytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers c...

Full description

Bibliographic Details
Main Author: Woodhouse, Nicholas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2009.
Series:Springer Undergraduate Mathematics Series,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-816-2
LEADER 03352nam a22004695i 4500
001 6004
003 DE-He213
005 20130725194310.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 # # |a 9781848828162  |9 978-1-84882-816-2 
024 7 # |a 10.1007/978-1-84882-816-2  |2 doi 
050 # 4 |a T57-57.97 
072 # 7 |a PBW  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Woodhouse, Nicholas.  |e author. 
245 1 0 |a Introduction to Analytical Dynamics  |b Revised Edition /  |c by Nicholas Woodhouse.  |h [electronic resource] : 
264 # 1 |a London :  |b Springer London,  |c 2009. 
300 # # |a XIII, 240p. 84 illus., 42 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 # |a Frames of Reference -- One Degree of Freedom -- Lagrangian Mechanics -- Noether's Theorem -- Rigid Bodies -- Oscillations -- Hamiltonian mechanics -- Geometry of Classical Mechanics -- Epilogue: Relativity and Quantum Theory -- Notes on Exercises. 
520 # # |a Analytical dynamics forms an important part of any undergraduate programme in applied mathematics and physics: it develops intuition about three-dimensional space and provides invaluable practice in problem solving. First published in 1987, this text is an introduction to the core ideas. It offers concise but clear explanations and derivations to give readers a confident grasp of the chain of argument that leads from Newton<U+0019>s laws through Lagrange<U+0019>s equations and Hamilton<U+0019>s principle, to Hamilton<U+0019>s equations and canonical transformations. This new edition has been extensively revised and updated to include: A chapter on symplectic geometry and the geometric interpretation of some of the coordinate calculations. A more systematic treatment of the conections with the phase-plane analysis of ODEs; and an improved treatment of Euler angles. A greater emphasis on the links to special relativity and quantum theory, e.g., linking Schrd̲inger<U+0019>s equation to Hamilton-Jacobi theory, showing how ideas from this classical subject link into contemporary areas of mathematics and theoretical physics. Aimed at second- and third-year undergraduates, the book assumes some familiarity with elementary linear algebra, the chain rule for partial derivatives, and vector mechanics in three dimensions, although the latter is not essential. A wealth of examples show the subject in action and a range of exercises <U+0013> with solutions <U+0013> are provided to help test understanding. 
650 # 0 |a Mathematics. 
650 # 0 |a Mechanics. 
650 # 0 |a Mechanics, applied. 
650 1 4 |a Mathematics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Mechanics. 
650 2 4 |a Theoretical and Applied Mechanics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848828155 
830 # 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-816-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)