Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group

This book presents the first systematic and unified treatment of the theory of mean periodic functions on homogeneous spaces. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to harmonic analysis, complex ana...

Full description

Bibliographic Details
Main Authors: Volchkov, Valery V. (Author), Volchkov, Vitaly V. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London, 2009.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-533-8
LEADER 03057nam a22005175i 4500
001 5969
003 DE-He213
005 20130725192040.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 # # |a 9781848825338  |9 978-1-84882-533-8 
024 7 # |a 10.1007/978-1-84882-533-8  |2 doi 
050 # 4 |a QA403.5-404.5 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 # |a Volchkov, Valery V.  |e author. 
245 1 0 |a Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group  |c by Valery V. Volchkov, Vitaly V. Volchkov.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London,  |c 2009. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
520 # # |a This book presents the first systematic and unified treatment of the theory of mean periodic functions on homogeneous spaces. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to harmonic analysis, complex analysis, integral geometry, and analysis on symmetric spaces. The main purpose of this book is the study of local aspects of spectral analysis and spectral synthesis on Euclidean spaces, Riemannian symmetric spaces of an arbitrary rank and Heisenberg groups. The subject can be viewed as arising from three classical topics: John's support theorem, Schwartz's fundamental principle, and Delsarte's two-radii theorem. Highly topical, the book contains most of the significant recent results in this area with complete and detailed proofs. In order to make this book accessible to a wide audience, the authors have included an introductory section that develops analysis on symmetric spaces without the use of Lie theory. Challenging open problems are described and explained, and promising new research directions are indicated. Designed for both experts and beginners in the field, the book is rich in methods for a wide variety of problems in many areas of mathematics. 
650 # 0 |a Mathematics. 
650 # 0 |a Fourier analysis. 
650 # 0 |a Integral equations. 
650 # 0 |a Integral Transforms. 
650 # 0 |a Functions, special. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Integral Equations. 
650 2 4 |a Special Functions. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Integral Transforms, Operational Calculus. 
700 1 # |a Volchkov, Vitaly V.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781848825321 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-84882-533-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)